Supporting Less-Than Queries on Encrypted Data using Multi-Server Secret Sharing and Practical Order-Revealing Encryption

Nate Chenette
ICERM conference on Encrypted Search
June 12, 2019

Project Background

- Baffle Inc. https://baffle.io/
- Goal: implement fully-fledged database server that provides a strong level of security
- "Baffle provides an advanced data protection solution that protects data in memory, in process and at-rest to reduce insider threat and data theft risk."
- Many of their schemes implement searchable encryption!
- Security model: multiple servers, assume only one is compromised by an active adversary
- Protect as much information as possible, while supporting various query types (addition, equality, comparison)
- My role as a consultant: evaluate schemes for comparison operations on encrypted data, specifically involving order-revealing encryption

Baffle System Architecture

Encryption/Decryption

Query Support

Functionality and Security Model

- Multiple servers
- Respond to queries via an efficient collaborative protocol
- Addition
- Equality
- Less-than
- Assume an intruder can only compromise one server at a time
- Characterize (and minimize) the leakage

Baffle Encryption (\& Authentication)

- Uses a pseudorandom function F and a MAC M
- Secret sharing, Encrypt-then-MAC

Plaintext d Trusted Computer $\stackrel{\wedge}{ }$

Encryption key k Authentication key k_{d}

- Choose random nonce n
- Compute pad by running PRF on nonce with enc. key:

$$
p=F(k, n)
$$

- Compute ciphertext c by subtracting* plaintext from tag:

$$
c=p-d=F(k, n)-d
$$

- Compute MAC:

$$
m=M\left(k_{a}, n, c\right)
$$

$$
(n, c, m)
$$

*All quantities and operations occur in some finite commutative ring, e.g., the integers mod 256

Baffle Authenticated Decryption

- Recall $c=F(k, n)-d$
- So, $d=F(k, n)-c$
- To decrypt (n, c, m):
- Check the MAC: Verify $m==M\left(k_{a}, n, c\right)$
- If so, re-compute the pad $F(k, n)$ from the nonce and subtract.

$$
d=F(k, n)-c
$$

Database View

Baffle Encrypted Addition

$$
\begin{aligned}
& c_{1}=F\left(k, n_{1}\right)-d_{1} \\
& c_{2}=F\left(k, n_{2}\right)-d_{2}
\end{aligned}
$$

$$
\text { Correctness: } \quad \begin{aligned}
c_{3} & =S+c_{1}+c_{2} \\
& =F\left(k, n_{3}\right)-F\left(k, n_{1}\right)-F\left(k, n_{2}\right)+c_{1}+c_{2} \\
& =F\left(k, n_{3}\right)-\left(d_{1}+d_{2}\right)
\end{aligned}
$$

Query from client via trusted computer:

Database

$$
c_{3}=S+c_{1}+c_{2}
$$

- Cipher tuple of sum is

$$
\left(n_{3}, c_{3}, 0^{*}\right)
$$

*DB can't compute the MAC, but the trusted computer could before returning the tuple
n_{1}, n_{2}

n_{3}, S

Encryption key k

Server 1 - Choose random nonce n_{3}

- Compute pad by running PRF on nonce:

$$
p=F\left(k, n_{3}\right)
$$

- Compute pad difference

$$
S=p-F\left(k, n_{1}\right)-F\left(k, n_{2}\right)
$$

Security notes:

- All of Server 1's information is independent of plaintext data!
- Database doesn't have k, so can't uncover pads from (independent) nonces.

Baffle Encrypted Equality

Server 1 - Check MACs: verify $m_{1}=M\left(k_{a}, n_{1}, c_{1}\right), m_{2}==M\left(k_{a}, n_{2}, c_{2}\right)$
\longleftarrow Auth. key k_{a}

- Compute ciphertext difference

$$
V=c_{1}-c_{2}
$$

- Compute

W = EqualityEncryption $\left(k_{E}, V\right)$

EqualEnc key k_{B}
Server 2 - Compute pad difference

$$
X=F\left(k, n_{1}\right)-F\left(k, n_{2}\right)
$$

- Compute

$$
Y=\text { EqualityEncryption }\left(k_{E}, X\right)
$$

EqualityEncryption preserves equality; details explained on next page
Security notes:

- Again, plaintext-dependent data (at Database \& Server 1) has been separated from the ability to decrypt (Server 2).
- The ability of the Database to discover sensitive information is dependent on the security of EqualityEncryption.

EqualityEncryption

- In principle, could be any equality-revealing encryption such as deterministic encryption [Bellare, Boldyreva, O'Neill 2007]
- As the EqualEnc key is new for each Equality query, Baffle gets away with a simple affine encryption. Use the key k_{E} to generate invertible multiplier α and shift β, and compute

$$
\text { EqualityEncryption }\left(k_{E}, V\right)=\alpha V+\beta
$$

- Since α is invertible, EqualityEncryption $\left(k_{E}, V\right)=\alpha V+\beta==\alpha X+\beta==$ EqualityEncryption $\left(k_{E}, X\right)$ if and only if $V==X$.

Encrypted Comparison - First Try

$$
\begin{aligned}
& c_{1}=F\left(k, n_{1}\right)-d_{1} \\
& c_{2}=F\left(k, n_{2}\right)-d_{2}
\end{aligned}
$$

Correctness (?):

$$
\begin{aligned}
d_{1}-d_{2} & =\left(F\left(k, n_{1}\right)-c_{1}\right)-\left(F\left(k, n_{2}\right)-c_{2}\right) \\
& =\left(F\left(k, n_{1}\right)-F\left(k, n_{2}\right)\right)-\left(c_{1}-c_{2}\right) \\
& =X-V
\end{aligned}
$$

```
So d
X<V,which matcosthe result of Wrong!!
ORE-LessThan ( }W,Y\mathrm{ )
```


Dealing With Signs

- For simplicity, assume plaintexts are ASCII characters, i.e., in Z_{128}
- Clarification: arithmetic is performed in Z_{256}, represented using (two's complement) signed bytes, i.e. taking values in the range $[-128,127]$.

True, since d_{1} and d_{2} are assumed to be ASCII characters in the range $[0,127]$ while $d_{1}-d_{2}$ is in the range [-127,127].

False, because of modularity of the subtraction. For example,

$$
X=100, V=-30 \text { gives }
$$

$$
X-V=-126<0 ;
$$

$$
X \geq V .
$$

Solution:

- Let $z_{0}=x_{0} \oplus v_{0}$ be an indicator for whether the sign bits of X and V differ.
- Let v be an indicator for whether $X_{1 . .7}<V_{1 . .7}$, where we are comparing the non-signed parts of X and V.
- Then $X-V<0$ iff $z_{0} \oplus v==1$.

Encrypted Comparison - Corrected

```
c
c
```


Baffle Implementation of Comparison

- For OrderRevealingEncryption($\left.k_{,} \cdot\right)$, use a variant of the "Practical Order-Revealing Encryption" scheme [Chenette, Lewi, Weis, Wu 2016]
- Leakage: order of $V_{1.7}$ and $W_{1.7}$, and the most significant differing bit (MSDB) of $V_{1 . .7}$ and $W_{1 . .7}$
- [Reminder] CLWW scheme: fix a PRF, F.
mask (pad)
$\operatorname{PracticalORE}\left(k_{\llcorner }, V_{1 . .7}\right)=\left(p_{1}\|\ldots\| p_{7}\right.$ where

$$
p_{j}=F\left(, V_{1 . .(j-1)}\right)+v_{j}(\bmod 3)
$$

- Each bit is masked by an element of Z_{3} derived from the prefix preceding the bit
- Baffle variant, PracticalORE2: essentially the same, but $\bmod 2$ instead of $\bmod 3$
- Will reveal location of $\operatorname{MSDB}\left(V_{1 . .7}, X_{1 . .7}\right)$ but not its value.
- In the scheme, also have Server 1 reveal all of $V_{1.7}$ to the Database so it can uncover the MSDB values.

Baffle Encrypted Comparison

$$
\begin{aligned}
& c_{1}=F\left(k, n_{1}\right)-d_{1} \\
& c_{2}=F\left(k, n_{2}\right)-d_{2}
\end{aligned}
$$

Implementation Particulars

- Use AES to generate the "pseudorandom" bits in PracticalORE2.
- For each prefix-derived mask, the number of AES output bits needed is $1+$ [prefix length]
- Mask = XOR of all AES bits corresponding to 1's in the prefix, XORed with the one extra bit.
- Extra bit guarantees ≥ 1 pseudorandom bit used in each mask (even all-0 prefix)
- Usage of other bits guarantees that different prefixes' masks are independent
- Example: prefix

01101
pseudorandom bits 101011
mask $\quad \operatorname{XOR}(0,1,1,1)=1$

- Relatively efficient: requires only 3 AES blocks to ORE-encrypt a 32-bit character

Security Considerations

- Recall: security model assumes an intruder can only compromise one server at a time
- Adversary at Server 1 ?
- All cipher data (derived from plaintext) is masked by a pseudorandom quantity generated using a key unknown at the server.
- Adversary at Server 2?
- No cipher data.
- Adversary at Database?
- The interesting case.

Security Considerations: Adversary at Database

- All bits of V are leaked, but this isn't a big deal (Database could compute $V=c_{1}-c_{2}$ itself)
- Use of PracticalORE2 leaks W only up to its MSDB with V... say, j bits
- Does this mean that only the first j bits are revealed of $d_{1}-d_{2}=X-V$?
- No.
- Consider V as uniformly random over Z_{256}, and X can be thought of as $V+d_{1}-d_{2}$.
- The probability that the MSDB of $V_{1 . .7}$ and $X_{1 . .7}$ is bit $j \in\{0, \ldots, 7\}$ is $\left(d_{1}-d_{2}\right) / 2^{7-j}$. See table.

Example pairs with differing most- significant bit	Value of $d_{1}-d_{2}=X-V$	Probability that V and X differ in the most-significant $(\mathcal{U}=0$) bit
(A) $d_{1}=1000000, d_{2}=0000000$	2^{6}	$2^{6} / 128=1 / 2$
(B) $d_{1}=1000000, d_{2}=0111111$	1	$1 / 128$

Thus, if we see V and X differ in the most-significant bit, case (A) is much likelier than case (B).

Security Considerations: Adversary at Database

- Theorem. The scheme is semantically secure with leakage function giving the plaintext difference $d_{1}-d_{2}$ between each pair queried.
- Note this baseline security would be achievable in much simpler \& efficient ways
- In practice, more is protected—namely, the difference is only leaked up to a distribution. E.g., if MSDB of X and V is bit $2 \in\{0 . .7\}$, and it's revealed that $X>V$, then $d_{1}-d_{2}$ is known to follow this distribution:

Baffle Comparison Leakage in Context

- Baffle originally wanted to try to prove that either (a) the MSDBs of d_{1} and d_{2} or (b) the MSB of $d_{1}-d_{2}$ is leaked, and nothing else.
- Unfortunately, both are false. (See previous example.)
- But, arguably, these leakage notions are artificial, anyway-they depend on data encoding!
- In fact... what would (a) leaking the MSDBs of d_{1} and d_{2} tell us about $d_{1}-d_{2}$, anyway?
- Pretend we don't know anything about common ASCII usage, i.e. we have no a priori knowledge about d_{1} and d_{2}. Then they're uniformly random over Z_{128}. We start with a distribution of $d_{1}-d_{2}$ in the left picture.
- Revealing the MSDB of d_{1} and d_{2} improves our knowledge of $d_{1}-d_{2}$. E.g., if they first differ in bit $2 \in$ $\{0 . .7\}$, and $d_{1}>d_{2}$, we have the right picture. (Look familiar?)

Baffle Comparison Leakage in Context

- Observation (informal): effectively, the actual Baffle $\left(d_{1}-d_{2}\right)$-leakage of is similar to the desired $\left(d_{1}-d_{2}\right)$ - leakage of (a) revealing only the MSDBs of d_{1} and d_{2}, if we had no a priori knowledge about d_{1} and d_{2}.
- However, one major difference: MSDB of d_{1} and d_{2} is deterministic, while Baffle $\left(d_{1}-d_{2}\right)$ leakage is randomized based on the computed pads
- Could this similarity be formalized?

Conclusion

- An interesting use case of searchable encryption
- Practical ORE used for an unforeseen application-essentially, on "secret share differences" rather than plaintexts
- Comparison protocol is semantically secure under leakage function giving the difference between queried plaintexts (proved, weak result)
- In fact, less is leaked, but the adversary's knowledge follows a non-uniform distribution that is not easily captured by a crypto notion.
- The leakage profile doesn't directly translate to MSDB of plaintexts or MSB of plaintext difference, but there are some interesting similarities between the distribution leaked and the former.

Questions / Comments?

- Thanks for listening.

