
Supporting Less-Than Queries on
Encrypted Data using Multi-Server Secret

Sharing and Practical Order-Revealing
Encryption

Nate Chenette
ICERM conference on Encrypted Search

June 12, 2019

Project Background

• Baffle Inc. https://baffle.io/
• Goal: implement fully-fledged database server that provides a strong level of security

• “Baffle provides an advanced data protection solution that protects data in memory, in process and at-rest to reduce
insider threat and data theft risk.”

• Many of their schemes implement searchable encryption!
• Security model: multiple servers, assume only one is compromised by an active adversary
• Protect as much information as possible, while supporting various query types (addition, equality,

comparison)

• My role as a consultant: evaluate schemes for comparison operations on encrypted data,
specifically involving order-revealing encryption

https://baffle.io/

Baffle System Architecture

Trusted Computerkeys

plaintexts

ciphertexts

Encryption/Decryption

Client

SMPC Servers

keys

Database
Cipher
data

Query Support

query

encrypted query

Client

response

encrypted response

Database

Trusted Computer

Functionality and Security Model

• Multiple servers
• Respond to queries via an efficient

collaborative protocol
• Addition
• Equality
• Less-than

• Assume an intruder can only compromise
one server at a time
• Characterize (and minimize) the leakage

Baffle Encryption (& Authentication)

• Uses a pseudorandom function F and a MAC M
• Secret sharing, Encrypt-then-MAC

• Choose random nonce n
• Compute pad by running PRF on nonce with enc. key:

p = F(k, n)
• Compute ciphertext c by subtracting* plaintext from tag:

c = p – d = F(k, n) – d
• Compute MAC:

m = M(ka, n, c)

Encryption key k
Authentication key ka

Plaintext d

(n, c, m)
*All quantities and operations occur in some finite
commutative ring, e.g., the integers mod 256

Trusted Computer

Baffle Authenticated Decryption

• Recall c = F(k, n) – d
• So, d = F(k, n) – c

• To decrypt (n, c, m):
• Check the MAC: Verify m == M(ka, n, c)
• If so, re-compute the pad F(k, n) from the nonce and subtract.

d = F(k, n) – c

Trusted Computer

Database View

(n1, c1, m1)
(n2, c2, m2)
(n3, c3, m3)
(n4, c4, m4)

…

Baffle Encrypted Addition

• Choose random nonce n3
• Compute pad by running PRF on nonce:

p = F(k, n3)
• Compute pad difference

S = p – F(k, n1) – F(k, n2)

Encryption key k

n1, n2

ADD (n1, c1, m1)
to (n2, c2, m2)

Database Server 1

n3, S

Query from client via
trusted computer:

• Compute ciphertext:
c3 = S + c1 + c2

• Cipher tuple of sum is
(n3, c3, 0*)

*DB can’t compute the MAC, but the trusted
computer could before returning the tuple

Security notes:
• All of Server 1’s information is independent of plaintext data!
• Database doesn’t have k, so can’t uncover pads from

(independent) nonces.

c3 = S + c1 + c2
= F(k, n3) – F(k, n1) – F(k, n2) + c1 + c2

= F(k, n3) – (d1 + d2)

Correctness:

c1 = F(k, n1) – d1
c2 = F(k, n2) – d2

Baffle Encrypted Equality

• Check MACs: verify
m1 == M(ka, n1, c1), m2 == M(ka, n2, c2)

• Compute ciphertext difference
V = c1 – c2

• Compute
W = EqualityEncryption(kE, V)

Auth. key ka

n1, n2

EQUAL? (n1, c1, m1)
(n2, c2, m2)

Database

Server 1

W

• Return TRUE iff
W == Y

• Compute pad difference
X = F(k, n1) – F(k, n2)

• Compute
Y = EqualityEncryption(kE, X)

Encryption key k

Server 2

n1, c1, m1,
n2, c2, m2

Y

EqualEnc key kE

W == Y iff V == X iff d1 == d2Correctness:

c1 = F(k, n1) – d1
c2 = F(k, n2) – d2

X V

Security notes:
• Again, plaintext-dependent data (at Database & Server 1) has been separated from the ability to decrypt (Server 2).
• The ability of the Database to discover sensitive information is dependent on the security of EqualityEncryption.

EqualityEncryption preserves equality; details explained on next page

EqualityEncryption

• In principle, could be any equality-revealing encryption such as deterministic encryption
[Bellare, Boldyreva, O’Neill 2007]
• As the EqualEnc key is new for each Equality query, Baffle gets away with a simple affine

encryption. Use the key kE to generate invertible multiplier 𝛼 and shift β, and compute
EqualityEncryption(kE, V) = 𝛼V + β

• Since 𝛼 is invertible, EqualityEncryption(kE, V) == 𝛼V + β == 𝛼X + β == EqualityEncryption(kE, X)
if and only if V == X.

Encrypted Comparison – First Try

• Check MACs: verify
m1 == M(ka, n1, c1), m2 == M(ka, n2, c2)

• Compute ciphertext difference
V = c1 – c2

• Compute
W = OrderRevealingEncryption(kL, V)

Auth. key ka

n1, n2

LESSTHAN? (n1, c1, m1)
(n2, c2, m2)

Database

Server 1

W

• Return result of
ORE-LessThan(W,Y)

• Compute pad difference
X = F(k, n1) – F(k, n2)

• Compute
Y = OrderRevealingEncryption(kL, X)

Encryption key k

Server 2

n1, c1, m1,
n2, c2, m2

Y

ORE key kL

d1 – d2 = (F(k, n1) – c1) – (F(k, n2) – c2)
= (F(k, n1) – F(k, n2)) – (c1 – c2)
= X – V

Correctness (?):

c1 = F(k, n1) – d1
c2 = F(k, n2) – d2

So d1 < d2 iff d1 – d2 < 0 iff X – V < 0 iff
X < V , which matches the result of
ORE-LessThan(W, Y)

Wrong!!

Dealing With Signs

True, since
d1 – d2 = X – V

d1 < d2 iff d1 – d2 < 0 iff X – V < 0 iff X < V

True, since d1 and d2 are assumed
to be ASCII characters in the
range [0,127] while d1 – d2 is in
the range [–127,127].

• For simplicity, assume plaintexts are ASCII characters, i.e., in Z128
• Clarification: arithmetic is performed in Z256, represented using (two’s complement) signed bytes, i.e. taking

values in the range [–128,127].

False, because of modularity of the
subtraction. For example,
X = 100, V = –30 gives

X – V = –126 < 0;
X ≥ V.

Solution:
• Let z0 = x0 ⨁ v0 be an indicator for whether the sign bits of X and V differ.
• Let 𝓋 be an indicator for whether X1..7 < V1..7, where we are comparing the non-signed parts of X and V.
• Then X – V < 0 iff z0 ⨁𝓋 == 1.

Claim from previous page:

Encrypted Comparison – Corrected

• Check MACs: verify
m1 == M(ka, n1, c1), m2 == M(ka, n2, c2)

• Compute ciphertext difference
V = c1 – c2

• Set
W = OrderRevealingEncryption(kL, V1..7)

Auth. key ka

n1, n2

LESSTHAN? (n1, c1, m1)
(n2, c2, m2)

Database

Server 1

W, v0

• Compute z0 = x0 ⨁ v0
• Let 𝓋 be an indicator for

ORE-LessThan(W,Y)
• Return TRUE iff

z0 ⨁𝓋 == 1

• Compute pad difference
X = F(k, n1) – F(k, n2)

• Set
Y = OrderRevealingEncryption(kL, X1..7)

Encryption key k

Server 2

n1, c1, m1,
n2, c2, m2

Y, x0

ORE key kL

c1 = F(k, n1) – d1
c2 = F(k, n2) – d2

Baffle Implementation of Comparison

• For OrderRevealingEncryption(kL,·), use a variant of the “Practical Order-Revealing
Encryption” scheme [Chenette, Lewi, Weis, Wu 2016]
• Leakage: order of V1..7 and W1..7, and the most significant differing bit (MSDB) of V1..7 and W1..7

• [Reminder] CLWW scheme: fix a PRF, F.

PracticalORE(kL, V1..7) = p1 ‖ … ‖ p7 where

pj = F(kL, V1..(j – 1)) + vj (mod 3)
• Each bit is masked by an element of Z3 derived from the prefix preceding the bit

• Baffle variant, PracticalORE2: essentially the same, but mod 2 instead of mod 3
• Will reveal location of MSDB(V1..7, X1..7) but not its value.
• In the scheme, also have Server 1 reveal all of V1..7 to the Database so it can uncover the MSDB values.

mask (pad)

Baffle Encrypted Comparison

• Check MACs: verify
m1 == M(ka, n1, c1), m2 == M(ka, n2, c2)

• Compute ciphertext difference
V = c1 – c2

• Set
W = PracticalORE2(kL, V1..7)

Auth. key ka

n1, n2

LESSTHAN? (n1, c1, m1)
(n2, c2, m2)

Database

Server 1

W, V

• Compute z0 = x0 ⨁ v0
• If W == Y, let 𝓋 = v0;

otherwise, let 𝓋 = vj

corresponding to the
MSDB between W and Y.

• Return TRUE iff
z0 ⨁𝓋 == 1

• Compute pad difference
X = F(k, n1) – F(k, n2)

• Set
Y = PracticalORE2(kL, X1..7)

Encryption key k

Server 2

n1, c1, m1,
n2, c2, m2

Y, x0

ORE key kL
(ephemeral)

c1 = F(k, n1) – d1
c2 = F(k, n2) – d2

Implementation Particulars

• Use AES to generate the “pseudorandom” bits in PracticalORE2.
• For each prefix-derived mask, the number of AES output bits needed is 1 + [prefix length]
• Mask = XOR of all AES bits corresponding to 1’s in the prefix, XORed with the one extra bit.
• Extra bit guarantees ≥1 pseudorandom bit used in each mask (even all-0 prefix)
• Usage of other bits guarantees that different prefixes’ masks are independent

• Example: prefix 01101
pseudorandom bits 101011______
mask XOR(0,1,1,1) = 1

• Relatively efficient: requires only 3 AES blocks to ORE-encrypt a 32-bit character

Security Considerations

• Recall: security model assumes an intruder can only compromise one server at a time

• Adversary at Server 1?
• All cipher data (derived from plaintext) is masked by a pseudorandom quantity generated using a key

unknown at the server.

• Adversary at Server 2?
• No cipher data.

• Adversary at Database?
• The interesting case.

Security Considerations: Adversary at Database

• All bits of V are leaked, but this isn’t a big deal (Database could compute V = c1 – c2 itself)
• Use of PracticalORE2 leaks W only up to its MSDB with V… say, j bits
• Does this mean that only the first j bits are revealed of d1 – d2 = X – V ?
• No.
• Consider V as uniformly random over Z256, and X can be thought of as V + d1 – d2.
• The probability that the MSDB of V1..7 and X1..7 is bit j ∈ {0,…,7} is (d1 – d2)/27 – j. See table.

Thus, if we see V and X differ in the most-significant bit, case (A) is much likelier than case (B).

Example pairs with differing most-
significant bit

Value of d1 – d2 = X – V Probability that V and X differ in
the most-significant (j = 0) bit

(A) d1 = 1000000, d2 = 0000000 26 26/128 = 1/2

(B) d1 = 1000000, d2 = 0111111 1 1/128

Security Considerations: Adversary at Database

• Theorem. The scheme is semantically secure with leakage function giving the plaintext
difference d1 – d2 between each pair queried.
• Note this baseline security would be achievable in much simpler & efficient ways

• In practice, more is protected—namely, the difference is only leaked up to a distribution. E.g.,
if MSDB of X and V is bit 2 ∈ {0..7}, and it’s revealed that X > V, then d1 – d2 is known to follow
this distribution:

Prob(d1–d2=x |
MSDB is bit 2, X > V)

25 26 – 11

Baffle Comparison Leakage in Context

• Baffle originally wanted to try to prove that either (a) the MSDBs of d1 and d2 or (b) the MSB
of d1 – d2 is leaked, and nothing else.
• Unfortunately, both are false. (See previous example.)

• But, arguably, these leakage notions are artificial, anyway—they depend on data encoding!
• In fact… what would (a) leaking the MSDBs of d1 and d2 tell us about d1 – d2, anyway?
• Pretend we don’t know anything about common ASCII usage, i.e. we have no a priori knowledge about d1

and d2. Then they’re uniformly random over Z128. We start with a distribution of d1 – d2 in the left picture.
• Revealing the MSDB of d1 and d2 improves our knowledge of d1 – d2. E.g., if they first differ in bit 2 ∈

{0..7}, and d1 > d2, we have the right picture. (Look familiar?)

0 127–127

Prob(d1–d2=x) Prob(d1–d2=x |
MSDB is bit 2, d1 > d2)

25 26 – 11

Baffle Comparison Leakage in Context

• Observation (informal): effectively, the actual Baffle (d1 – d2)-leakage of is similar to the
desired (d1 – d2)- leakage of (a) revealing only the MSDBs of d1 and d2, if we had no a priori
knowledge about d1 and d2.

• However, one major difference: MSDB of d1 and d2 is deterministic, while Baffle (d1 – d2)-
leakage is randomized based on the computed pads

• Could this similarity be formalized?

Conclusion

• An interesting use case of searchable encryption
• Practical ORE used for an unforeseen application—essentially, on “secret share differences”

rather than plaintexts
• Comparison protocol is semantically secure under leakage function giving the difference

between queried plaintexts (proved, weak result)
• In fact, less is leaked, but the adversary’s knowledge follows a non-uniform distribution that is

not easily captured by a crypto notion.
• The leakage profile doesn’t directly translate to MSDB of plaintexts or MSB of plaintext

difference, but there are some interesting similarities between the distribution leaked and
the former.

Questions / Comments?

• Thanks for listening.

