Supporting Less-Than Queries on
Encrypted Data using Multi-Server Secret
Sharing and Practical Order-Revealing
Encryption

Nate Chenette
ICERM conference on Encrypted Search
June 12, 2019

ROSE-HULMAN

CHNOLOGY

Project Background

e Baffle Inc. https://baffle.io/

* Goal: implement fully-fledged database server that provides a strong level of security

» “Baffle provides an advanced data protection solution that protects data in memory, in process and at-rest to reduce
insider threat and data theft risk.”

* Many of their schemes implement searchable encryption!
* Security model: multiple servers, assume only one is compromised by an active adversary

* Protect as much information as possible, while supporting various query types (addition, equality,
comparison)

* My role as a consultant: evaluate schemes for comparison operations on encrypted data,
specifically involving order-revealing encryption

https://baffle.io/

Baffle System Architecture

Client Client
pIaintexts' ' query l [response
keys — | Trusted Computer * Trusted Computer ik ’ keys
ciphertexts‘ [encrypted query‘ lencrypted response
Database Database |« (jsraer SMPC Servers

Encryption/Decryption Query Support

Functionality and Security Model

* Multiple servers

* Respond to queries via an efficient
collaborative protocol
e Addition
e Equality
* Less-than

e Assume an intruder can only compromise
one server at a time

* Characterize (and minimize) the leakage

11111 =0

11111 =0

11111 e=0

11111 =0

11111 e=0

Baffle Encryption (& Authentication)

» Uses a pseudorandom function Fand a MAC M

* Secret sharing, Encrypt-then-MAC

Encryption key
Authentication key

—

Plaintext d '

Trusted Computer i%

Choose random nonce n
Compute pad by running PRF on nonce with enc. key:
p = F(k, n)
Compute ciphertext c by subtracting™ plaintext from tag:
c=p—-d=F(k n)—d
Compute MAC:

*All quantities and operations occur in some finite
commutative ring, e.g., the integers mod 256

Baffle Authenticated Decryption

e Recall c=F(k, n)—d
*So, d=F(kn)—c

* To decrypt (n, c, m): Trusted Computer i%

* Check the MAC: Verify m==M("_, n, c)
* If so, re-compute the pad F(k, n) from the nonce and subtract.
d=F(k,n)-c

Database View

(n1; C1; ml)
(ny, ¢;, My)
(n3, ¢35, M3)
(N4, €4y My)

¢, = F(k, ny) —d,
Baffle Encrypted Addition R

Correctness: c;=S+c,+¢,

= F(k, n3) = F(k, n1) = F(k, ny) + ¢c; + ¢,

= F(k, n3) — (d1 + d)
Query from client via ADD (n,, c1, m;)

trusted computer: to (n,, ¢;, My) Encryption key
nqy, Ny
Database >| Server1l ¢ Chooserandom nonce n;

a

Compute pad by running PRF on nonce:
n3;S :::T-_:; sz(1n3)
 Compute ciphertext:

----- =) + Compute pad difference
CG3=S+C +Cy 5 =p = Hk ni) = FE n)
* Cipher tuple of sum is
(ns, cs, 0%)

Security notes:
*DB can’t compute the MAC, but the trusted e All of Server 1’s information is independent of plaintext data!
computer could before returning the tuple Database doesn’t have k, so can’t uncover pads from

(independent) nonces.

Baffle Encrypted Equality

EQUAL? (n4, ¢, my)
(n2r C2, mZ)

|

Database

e Return TRUE iff
W ==

X 4

¢1 |F(k, ny)|—dy
¢, F|F(k, ny)|—d,

Correctness: W==Y iff V==X iffd, ==d,

Check MACs: verify
my == M(r, nq, ¢1), my==M(", n,, c,)
Compute ciphertext difference
V=c,—c¢
Compute
W = EqualityEncryption(/, V)

Security notes:

Server 1
M1, €1, My, e
n21 CZI mZ .
w
nll n2
> Server 2
Y —

ooooo -0
nnnnn -0
ooooo -0

Compute pad difference
X = F(k, n1) = F(k, n,)
Compute
Y = EqualityEncryption(/, X)

<— Auth. key

N

EqualEnc key

d

<— Encryption key

EqualityEncryption preserves equality; details explained on next page

* Again, plaintext-dependent data (at Database & Server 1) has been separated from the ability to decrypt (Server 2).
* The ability of the Database to discover sensitive information is dependent on the security of EqualityEncryption.

EqualityEncryption

* In principle, could be any equality-revealing encryption such as deterministic encryption
[Bellare, Boldyreva, O’Neill 2007]

* As the EqualEnc key is new for each Equality query, Baffle gets away with a simple affine
encryption. Use the key . to generate invertible multiplier a and shift B, and compute

EqualityEncryption(/, V) =aV + B

* Since «a is invertible, EqualityEncryption(’, V) == aV + B == aX + B == EqualityEncryption(", X)
if and only if V== X.

Encrypted Comparison — First Try

LESSTHAN? (n4, ¢4, my)

¢, = Flk, ny) —d
¢, = F(k, ny) —d,

<— Auth. key

N

(n2, €5, My) Server1 * Check MACs: verify
my == M(, N1, Cl)l m, == M(y Ny, CZ)
s * Compute ciphertext difference
M1, €1, My, e V=c —c
- L1 2
Database nz, €2 m2 > ° Compute
< W =-OrderRevealingEneryption{ , V)
w
Ny, Ny]
> | Server2 ¢ Compute pad difference
¢ v X = F(k, ny) = F(k, n)
e Return result of _: Compute
ORE-tessFthan(W,Y) | | &= =o Y=

OrderRevealingEneryption{t |, X)

ORE key

d

<— Encryption key

Correctness (?): dy—d, = (F(k, ny) —c,) — (F(k, ny) —¢5)

= (F(k, n1) = F(k, ny)) = (c1 — ¢3)
=X-V

e result of

ff

Wrong!!

Dealing With Signs

For simplicity, assume plaintexts are ASCII characters, i.e., in Z;55

Clarification: arithmetic is performed in Z,5¢, represented using (two’s complement) signed bytes, i.e. taking
values in the range [-128,127].

Claim from previous page: d;<d, iff d;—d, <0 iff X-V<0 iff X<V

S N

True, since d; and d, are assumed True, since False, because of modularity of the
to be ASCII characters in the di—d,=X=-V subtraction. For example,
range [0,127] while d; —d, is in X =100, V=-30 gives
the range [-127,127]. X-V=-126<0;
X2V.
Solution:

* Letzy=xy @D vy be an indicator for whether the sign bits of X and V differ.

* Let v be an indicator for whether X; ; < V; 5, where we are comparing the non-signed parts of X and V.
* ThenX-V<O0iff z; @ v ==1.

Encrypted Comparison — Corrected

LESSTHAN? (n,, c,, my)
(n2I Co, mZ)

|

Database

Compute zy = xo D v,
Let v be an indicator for
ORE-LessThan(W,Y)
Return TRUE iff

Zo D v ==

nll Cll mll
n21 CZI mZ .

a

WI VO

nll n2

Server 1

ooooo -0
nnnnn -0
nnnnn -0

Check MACs: verify

my == M(r, nq, ¢1), my==M(", n,, c,)

Compute ciphertext difference
V=c,—c¢

Set

W = OrderRevealingEncryption(", V; 7)

a

Y, Xo

Server 2

ooooo -0
nnnnn -0
ooooo -0

Compute pad difference
X = F(k, ny) = F(k, n;)
Set
Y = OrderRevealingEncryption(’, X; 7)

¢, = Flk, ny) —d
¢, = F(k, ny) —d,

<— Auth. key

N

ORE key

d

<— Encryption key

Baffle Implementation of Comparison

* For OrderRevealingEncryption(’ ,-), use a variant of the “Practical Order-Revealing
Encryption” scheme [Chenette, Lewi, Weis, Wu 2016]
* Leakage: order of V; ; and W; 5, and the most significant differing bit (MSDB) of V; ; and W, -

* [Reminder] CLWW scheme: fix a PRF, F. mask (pad)

Practical ORE(, Vl._7)7/p1|| .. |l p; where
p;=F(, Vi i-y) +v; (mod 3)
* Each bit is masked by an element of Z; derived from the prefix preceding the bit

 Baffle variant, Practical ORE2: essentially the same, but mod 2 instead of mod 3

* Will reveal location of MSDB(V; 7, X1 7) but not its value.
* In the scheme, also have Server 1 reveal all of V; 5 to the Database so it can uncover the MSDB values.

Baffle Encrypted Comparison

LESSTHAN? (n,, c,, my)
(n2I Co, mZ)

|

Database

Compute zo = x, D vy
If W==Y, let v = vy
otherwise, let v = v;
corresponding to the
MSDB between W and Y.
Return TRUE iff

Zo D v ==

nll Cll mll
n21 CZI mZ .

a

a

Server 1 Check MACs: verify
my == M("., ny, 1), my == M(\, n, ;)
s Compute ciphertext difference
= V=c -0
Set
W = Practical ORE2(", V; ;)
Server 2 Compute pad difference

ooooo -0
nnnnn -0
ooooo -0

X=F(,nl)—F(;nZ)
Set
Y = Practical ORE2(", X; 7)

¢, = F(k, ny) —d,
¢, = F(k, ny) —d,

<— Auth. key

N

ORE key
/ (ephemeral)

<— Encryption key

Implementation Particulars

* Use AES to generate the “pseudorandom” bits in Practical ORE2.
* For each prefix-derived mask, the number of AES output bits needed is 1 + [prefix length]

* Mask = XOR of all AES bits corresponding to 1’s in the prefix, XORed with the one extra bit.
* Extra bit guarantees 21 pseudorandom bit used in each mask (even all-0 prefix)
* Usage of other bits guarantees that different prefixes’ masks are independent

* Example: prefix 01101
pseudorandom bits 101011
mask XOR(0,1,1,1) =1

 Relatively efficient: requires only 3 AES blocks to ORE-encrypt a 32-bit character

Security Considerations

* Recall: security model assumes an intruder can only compromise one server at a time

* Adversary at Server 1°?

* All cipher data (derived from plaintext) is masked by a pseudorandom quantity generated using a key
unknown at the server.

* Adversary at Server 2°?
* No cipher data.

e Adversary at Database?
* The interesting case.

Security Considerations: Adversary at Database

* All bits of V are leaked, but this isn’t a big deal (Database could compute V = ¢, — ¢, itself)
* Use of Practical ORE2 leaks W only up to its MSDB with V... say, j bits

* Does this mean that only the firstj bits are revealed of d; —d, =X-V?
* No.
* Consider V as uniformly random over Z,5,, and X can be thought of as V + d; — d,.
* The probability that the MSDB of V; ; and X; ; is bitj € {0,...,7} is (d, — d,)/27 ~1. See table.

Example pairs with differing most- | Valueof - =X-V Probability that V and X differ in
significant bit the most-significant (j = 0) bit
(A) d,=1000000, d, = 0000000 2% 26/128=1/2

(B) d;=1000000, d, =0111111 1 1/128

Thus, if we see V and X differ in the most-significant bit, case (A) is much likelier than case (B).

Security Considerations: Adversary at Database

 Theorem. The scheme is semantically secure with leakage function giving the plaintext
difference d; — d, between each pair queried.
* Note this baseline security would be achievable in much simpler & efficient ways

* In practice, more is protected—namely, the difference is only leaked up to a distribution. E.g.,
if MSDB of X and Vis bit 2 € {0..7}, and it’s revealed that X > V, then d, — d, is known to follow
this distribution:

Prob(d,—d,=x |
MSDB is bit 2, X > V)

Baffle Comparison Leakage in Context

* Baffle originally wanted to try to prove that either (a) the MSDBs of d, and d, or (b) the MSB
of d, — d, is leaked, and nothing else.
* Unfortunately, both are false. (See previous example.)

* But, arguably, these leakage notions are artificial, anyway—they depend on data encoding!

* In fact... what would (a) leaking the MSDBs of d; and d, tell us about d, — d,, anyway?

* Pretend we don’t know anything about common ASCII usage, i.e. we have no a priori knowledge about d;
and d,. Then they’re uniformly random over Z;,5. We start with a distribution of d; — d, in the left picture.

* Revealing the MSDB of d; and d, improves our knowledge of d, — d,. E.g., if they first differ in bit 2 €
{0..7}, and d; > d,, we have the right picture. (Look familiar?)

Prob(d,—d,=x) Prob(d,—d,=x |
MSDB is bit 2, d, > d,)

=127 0 127 1 25 26-1

Baffle Comparison Leakage in Context

* Observation (informal): effectively, the actual Baffle (d, — d,)-leakage of is similar to the
desired (d, — d,)- leakage of (a) revealing only the MSDBs of d, and d,, if we had no a priori
knowledge about d; and d..

* However, one major difference: MSDB of d; and d, is deterministic, while Baffle (d, — d,)-
leakage is randomized based on the computed pads

* Could this similarity be formalized?

Conclusion

* An interesting use case of searchable encryption

* Practical ORE used for an unforeseen application—essentially, on “secret share differences”
rather than plaintexts

* Comparison protocol is semantically secure under leakage function giving the difference
between queried plaintexts (proved, weak result)

* In fact, less is leaked, but the adversary’s knowledge follows a non-uniform distribution that is
not easily captured by a crypto notion.

* The leakage profile doesn’t directly translate to MSDB of plaintexts or MSB of plaintext
difference, but there are some interesting similarities between the distribution leaked and
the former.

Questions / Comments?

* Thanks for listening.

