Supporting Less-Than Queries on Encrypted Data using Multi-Server Secret Sharing and Practical Order-Revealing Encryption

Nate Chenette

ICERM conference on Encrypted Search

June 12, 2019

Project Background

- Baffle Inc. <u>https://baffle.io/</u>
 - Goal: implement fully-fledged database server that provides a strong level of security
 - "Baffle provides an advanced data protection solution that protects data in memory, in process and at-rest to reduce insider threat and data theft risk."
 - Many of their schemes implement searchable encryption!
 - Security model: multiple servers, assume **only one** is compromised by an active adversary
 - Protect as much information as possible, while supporting various query types (addition, equality, comparison)
- My role as a consultant: evaluate schemes for comparison operations on encrypted data, specifically involving order-revealing encryption

Baffle System Architecture

Encryption/Decryption

Query Support

Functionality and Security Model

- Multiple servers
- Respond to queries via an efficient collaborative protocol
 - Addition
 - Equality
 - Less-than
- Assume an intruder can only compromise **one server at a time**
- Characterize (and minimize) the leakage

Baffle Encryption (& Authentication)

*All quantities and operations occur in some finite commutative ring, e.g., the integers mod 256

Baffle Authenticated Decryption

- Recall c = F(k, n) d
- So, d = F(k, n) c
- To decrypt (n, c, m): Trusted Computer
 Check the MAC: Verify m == M(k_a, n, c)
 If so, re-compute the pad F(k, n) from the nonce and subtract. d = F(k, n) - c

Database View

 $c_1 = F(k, n_1) - d_1$ $c_2 = F(k, n_2) - d_2$

*DB can't compute the MAC, but the trusted computer could before returning the tuple

Security notes:

- All of Server 1's information is independent of plaintext data!
- Database doesn't have k, so can't uncover pads from (independent) nonces.

Baffle Encrypted Equality

Correctness: W == Y iff V == X iff $d_1 == d_2$

 $c_1 \neq |F(k, n_1)| - d_1$

EqualityEncryption preserves equality; details explained on next page

Security notes:

- Again, plaintext-dependent data (at Database & Server 1) has been separated from the ability to decrypt (Server 2).
- The ability of the Database to discover sensitive information is dependent on the security of EqualityEncryption.

EqualityEncryption

- In principle, could be any equality-revealing encryption such as deterministic encryption [Bellare, Boldyreva, O'Neill 2007]
- As the EqualEnc key is new for each Equality query, Baffle gets away with a simple affine encryption. Use the key $k_{\rm E}$ to generate invertible multiplier α and shift β , and compute

EqualityEncryption($k_{\rm E}$, V) = α V + β

• Since α is invertible, EqualityEncryption($k_{\rm E}$, V) == $\alpha V + \beta$ == $\alpha X + \beta$ == EqualityEncryption($k_{\rm E}$, X) if and only if V == X.

Encrypted Comparison – First Try

Correctness (?): $d_1 - d_2 = (F(k, n_1) - c_1) - (F(k, n_2) - c_2)$ = $(F(k, n_1) - F(k, n_2)) - (c_1 - c_2)$ = X - V

Dealing With Signs

- For simplicity, assume plaintexts are ASCII characters, i.e., in Z₁₂₈
- Clarification: arithmetic is performed in Z₂₅₆, represented using (two's complement) signed bytes, i.e. taking values in the range [-128,127].

Solution:

- Let $z_0 = x_0 \oplus v_0$ be an indicator for whether the sign bits of X and V differ.
- Let v be an indicator for whether $X_{1..7} < V_{1..7}$, where we are comparing the non-signed parts of X and V.
- Then X V < 0 iff $z_0 \oplus v == 1$.

Encrypted Comparison – Corrected

Baffle Implementation of Comparison

- For OrderRevealingEncryption(k_L,·), use a variant of the "Practical Order-Revealing Encryption" scheme [Chenette, Lewi, Weis, Wu 2016]
 - Leakage: order of $V_{1..7}$ and $W_{1..7}$, and the most significant differing bit (MSDB) of $V_{1..7}$ and $W_{1..7}$
- [Reminder] CLWW scheme: fix a PRF, F.

PracticalORE(
$$k_{L}, V_{1..7}$$
) = $p_1 \parallel ... \parallel p_7$ where
 $p_j = F(k_L, V_{1..(j-1)}) + v_j \pmod{3}$

mask (nad)

- Each bit is masked by an element of Z_3 derived from the prefix preceding the bit
- Baffle variant, PracticalORE2: essentially the same, but mod 2 instead of mod 3
 - Will reveal location of MSDB($V_{1..7}, X_{1..7}$) but not its value.
 - In the scheme, also have Server 1 reveal all of $V_{1..7}$ to the Database so it can uncover the MSDB values.

Baffle Encrypted Comparison

 $z_0 \oplus v == 1$

Implementation Particulars

- Use AES to generate the "pseudorandom" bits in PracticalORE2.
- For each prefix-derived mask, the number of AES output bits needed is 1 + [prefix length]
- Mask = XOR of all AES bits corresponding to 1's in the prefix, XORed with the one extra bit.
 - Extra bit guarantees ≥1 pseudorandom bit used in each mask (even all-0 prefix)
 - Usage of other bits guarantees that different prefixes' masks are independent

Example:	prefix	0 <mark>11</mark> 0 <mark>1</mark>	
	pseudorandom bit	s 1 <mark>01</mark> 0 <mark>11</mark>	
	mask	XOR(0,1,1,1) = 1	

• Relatively efficient: requires only 3 AES blocks to ORE-encrypt a 32-bit character

Security Considerations

- Recall: security model assumes an intruder can only compromise one server at a time
- Adversary at Server 1?
 - All cipher data (derived from plaintext) is masked by a pseudorandom quantity generated using a key unknown at the server.
- Adversary at Server 2?
 - No cipher data.
- Adversary at Database?
 - The interesting case.

Security Considerations: Adversary at Database

- All bits of V are leaked, but this isn't a big deal (Database could compute $V = c_1 c_2$ itself)
- Use of PracticalORE2 leaks W only up to its MSDB with V... say, j bits
- Does this mean that only the first *j* bits are revealed of $d_1 d_2 = X V$?
 - No.
 - Consider V as uniformly random over Z_{256} , and X can be thought of as $V + d_1 d_2$.
 - The probability that the MSDB of $V_{1..7}$ and $X_{1..7}$ is bit $j \in \{0,...,7\}$ is $(d_1 d_2)/2^{7-j}$. See table.

Example pairs with differing most- significant bit		Probability that <i>V</i> and <i>X</i> differ in the most-significant (<i>j</i> = 0) bit
(A) $d_1 = 1000000, d_2 = 00000000000000000000000000000000000$	2 ⁶	$2^{6}/128 = 1/2$
(B) d ₁ = 1000000, d ₂ = 0111111	1	1/128

Thus, if we see V and X differ in the most-significant bit, case (A) is much likelier than case (B).

Security Considerations: Adversary at Database

- Theorem. The scheme is semantically secure with leakage function giving the plaintext difference $d_1 d_2$ between each pair queried.
 - Note this baseline security would be achievable in much simpler & efficient ways
- In practice, more is protected—namely, the difference is only leaked up to a distribution. E.g., if MSDB of X and V is bit 2 ∈ {0..7}, and it's revealed that X > V, then d₁ d₂ is known to follow this distribution:

Baffle Comparison Leakage in Context

- Baffle originally wanted to try to prove that either (a) the MSDBs of d_1 and d_2 or (b) the MSB of $d_1 d_2$ is leaked, and nothing else.
 - Unfortunately, both are false. (See previous example.)
- But, arguably, these leakage notions are artificial, anyway—they depend on data encoding!
- In fact... what would (a) leaking the MSDBs of d_1 and d_2 tell us about $d_1 d_2$, anyway?
 - Pretend we don't know anything about common ASCII usage, i.e. we have no a priori knowledge about d_1 and d_2 . Then they're uniformly random over Z_{128} . We start with a distribution of $d_1 d_2$ in the left picture.
 - Revealing the MSDB of d_1 and d_2 improves our knowledge of $d_1 d_2$. E.g., if they first differ in bit $2 \in \{0..7\}$, and $d_1 > d_2$, we have the right picture. (Look familiar?)

Baffle Comparison Leakage in Context

- Observation (informal): effectively, the actual Baffle $(d_1 d_2)$ -leakage of is similar to the desired $(d_1 d_2)$ -leakage of (a) revealing only the MSDBs of d_1 and d_2 , if we had no a priori knowledge about d_1 and d_2 .
- However, one major difference: MSDB of d_1 and d_2 is deterministic, while Baffle $(d_1 d_2)$ -leakage is randomized based on the computed pads
- Could this similarity be formalized?

Conclusion

- An interesting use case of searchable encryption
- Practical ORE used for an unforeseen application—essentially, on "secret share differences" rather than plaintexts
- Comparison protocol is semantically secure under leakage function giving the difference between queried plaintexts (proved, weak result)
- In fact, less is leaked, but the adversary's knowledge follows a non-uniform distribution that is not easily captured by a crypto notion.
- The leakage profile doesn't directly translate to MSDB of plaintexts or MSB of plaintext difference, but there are some interesting similarities between the distribution leaked and the former.

Questions / Comments?

• Thanks for listening.